Author Affiliations
Abstract
1 National Integrated Circuit Industry and Education Integration Innovation Platform, Department of Electronic Science, Xiamen University, Xiamen 361005, China
2 Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
3 College of Electrical and Computer Engineering, Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, China
4 Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan, China
Micro-light-emitting diodes (micro-LEDs) with outstanding performance are promising candidates for next-generation displays. To achieve the application of high-resolution displays such as meta-displays, virtual reality, and wearable electronics, the size of LEDs must be reduced to the micro-scale. Thus, traditional technology cannot meet the demand during the processing of micro-LEDs. Recently, lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing, adjustable energy and speed of the laser beam, no cutting force acting on the devices, high efficiency, and low cost. Herein, we review the techniques and principles of laser-based technologies for micro-LED displays, including chip dicing, geometry shaping, annealing, laser-assisted bonding, laser lift-off, defect detection, laser repair, mass transfer, and optimization of quantum dot color conversion films. Moreover, the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.
laser micro-LED nano-processing defective detection laser repair mass transfer quantum dot 
Opto-Electronic Science
2023, 2(10): 230028
Author Affiliations
Abstract
1 National Integrated Circuit Industry and Education Integration Innovation Platform, Department of Electronic Science, Xiamen University, Xiamen 361005, China
2 Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
3 College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, China
4 Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, China
Deep-ultraviolet (DUV) sterilization technology using DUV-LEDs has attracted considerable attention owing to its portability, eco-friendliness, high potency, and broad-spectrum sterilization. This study compiles the developments of recent DUV sterilization research. Recent works have investigated DUV sterilization from the perspective of device improvement and principle investigation: one employed a novel epitaxial structure to optimize the performance and fabrication cost of DUV-LEDs and realized potent virus disinfection effects for various respiratory RNA viruses, and another work explained the disinfection phenomenon of SARS-CoV-2 and its variants (Delta and Omicron) in a cryogenic environment. These studies have contributed significantly to the development of DUV sterilization.
Opto-Electronic Advances
2023, 6(9): 230154
Author Affiliations
Abstract
The evolution of next-generation cellular networks is aimed at creating faster, more reliable solutions. Both the next-generation 6G network and the metaverse require high transmission speeds. Visible light communication (VLC) is deemed an important ancillary technology to wireless communication. It has shown potential for a wide range of applications in next-generation communication. Micro light-emitting diodes (μLEDs) are ideal light sources for high-speed VLC, owing to their high modulation bandwidths. In this review, an overview of μLEDs for VLC is presented. Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization, crystal orientation, and active region structure. Moreover, electroluminescent white LEDs, photoluminescent white LEDs based on phosphor or quantum-dot color conversion, and μLED-based detectors for VLC are introduced. Finally, the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced, including underwater VLC and artificial intelligence-based VLC systems.The evolution of next-generation cellular networks is aimed at creating faster, more reliable solutions. Both the next-generation 6G network and the metaverse require high transmission speeds. Visible light communication (VLC) is deemed an important ancillary technology to wireless communication. It has shown potential for a wide range of applications in next-generation communication. Micro light-emitting diodes (μLEDs) are ideal light sources for high-speed VLC, owing to their high modulation bandwidths. In this review, an overview of μLEDs for VLC is presented. Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization, crystal orientation, and active region structure. Moreover, electroluminescent white LEDs, photoluminescent white LEDs based on phosphor or quantum-dot color conversion, and μLED-based detectors for VLC are introduced. Finally, the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced, including underwater VLC and artificial intelligence-based VLC systems.
visible light communication μLEDs modulation bandwidth detector 6G 
Opto-Electronic Science
2022, 1(12): 220020
Xiao Yang 1,2†Yue Lin 1,2†Tingzhu Wu 1,2Zijun Yan 1,2[ ... ]Rong Zhang 1,2,*
Author Affiliations
Abstract
1 Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
2 Institute of Future Display Technology, Xiamen University, Xiamen 361005, China
3 Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Chiao Tung University, Hsinchu 30010, Taiwan, China
Augmented reality (AR) and virtual reality (VR) are two novel display technologies that are under updates. The essential feature of AR/VR is the full-color display that requires high pixel densities. To generate three-color pixels, the fluorescent color conversion layer inevitably includes green and red pixels. To fabricate such sort of display kits, inkjet printing is a promising way to position the color conversion layers. In this review article, the progress of AR/VR technologies is first reviewed, and in succession, the state of the art of inkjet printing, as well as two key issues — the optimization of ink and the reduction of coffee-ring effects, are introduced. Finally, some potential problems associated with the color converting layer are highlighted.Augmented reality (AR) and virtual reality (VR) are two novel display technologies that are under updates. The essential feature of AR/VR is the full-color display that requires high pixel densities. To generate three-color pixels, the fluorescent color conversion layer inevitably includes green and red pixels. To fabricate such sort of display kits, inkjet printing is a promising way to position the color conversion layers. In this review article, the progress of AR/VR technologies is first reviewed, and in succession, the state of the art of inkjet printing, as well as two key issues — the optimization of ink and the reduction of coffee-ring effects, are introduced. Finally, some potential problems associated with the color converting layer are highlighted.
micro-LED quantum dots augmented reality virtual reality inkjet printing 
Opto-Electronic Advances
2022, 5(6): 210123
Author Affiliations
Abstract
1 College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
2 Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China
3 Department of Computer Science, University of Liverpool, Liverpool, UK
4 College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
5 Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China

This paper proposes a micro-LED backlight module with a distributed Bragg reflector (DBR) structure to achieve excellent micro-LED backlight module quality and uses deep reinforcement learning (DRL) architecture for optical design. In the DRL architecture, to solve the computing environment problems of the two extreme structures of micro-scale and macro-scale, this paper proposes an environment control agent and virtual-realistic workflow to ensure that the design environment parameters are highly correlated with experimental results. This paper successfully designed a micro-LED backlight module with a DBR structure by the abovementioned methods. The micro-LED backlight module with a DBR structure improves the uniformity performance by 32% compared with the micro-LED backlight module without DBR, and the design calculation time required by the DRL method is only 17.9% of the traditional optical simulation.

Photonics Research
2022, 10(2): 02000269
Author Affiliations
Abstract
1 Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
2 International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University, Hsinchu 30010, China
3 Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
4 School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
5 Research Center for Applied Sciences, Academia Sinica, Taipei 11529, China
6 Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
7 e-mail: wutingzhu@xmu.edu.cn
8 e-mail: hckuo@faculty.nctu.edu.tw
We propose a flexible white-light system for high-speed visible-light communication (VLC) applications, which consists of a semipolar blue InGaN/GaN single-quantum-well micro-light-emitting diode (LED) on a flexible substrate pumping green CsPbBr3 perovskite quantum-dot (PQD) paper in nanostructure form and red CdSe QD paper. The highest bandwidth for CsPbBr3 PQD paper, 229 MHz, is achieved with a blue micro-LED pumping source and a high data transmission rate of 400 Mbps; this is very promising for VLC application. An 817 MHz maximum bandwidth and a 1.5 Gbps transmission speed are attained by the proposed semipolar blue micro-LEDs. The proposed flexible white light system and the high-bandwidth PQD paper could pave the way for VLC wearable devices.
Photonics Research
2021, 9(12): 12002341
Tingzhu Wu 1,2†Yue Lin 1,2†Yu-Ming Huang 3†Meng Liu 1[ ... ]Zhong Chen 1,2,6,*
Author Affiliations
Abstract
1 School of Electronic Science and Engineering, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
2 Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Xiamen 361005, China
3 Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
4 Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, China
5 e-mail: hckuo@faculty.nctu.edu.tw
6 e-mail: chenz@xmu.edu.cn
A promising approach for the development of effective full-color displays is to combine blue microLEDs (μLEDs) with color conversion layers. Perovskite nanocrystals (PNCs) are notable for their tolerance to defects and provide excellent photoluminescence quantum yields and high color purity compared to metal chalcogenide quantum dots. The stability of PNCs in ambient conditions and under exposure to blue light can be improved using a SiO2 coating. This study proposes a device that could be used for both display and visible light communication (VLC) applications. The semipolar blue μLED array fabricated in this study shows a negligible wavelength shift, indicating a significant reduction in the quantum confined Stark effect. Owing to its shorter carrier lifetime, the semipolar μLED array exhibits an impressive peak 3 dB bandwidth of 655 MHz and a data transmission rate of 1.2 Gb/s corresponding to an injection current of 200 mA. The PNC–μLED device assembled from a semipolar μLED array with PNCs demonstrates high color stability and wide color-gamut features, achieving 127.23% and 95.00% of the National Television Standards Committee standard and Rec. 2020 on the CIE 1931 color diagram, respectively. These results suggest that the proposed PNC–μLED device is suitable for both display-related and VLC applications.
Photonics Research
2021, 9(11): 11002132
Author Affiliations
Abstract
1 School of Electronic Science and Engineering, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
2 Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Xiamen 361005, China
3 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
4 Department of Photonics and Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Chiao Tung University, Hsinchu 30010, China.
With regard to micro-light-emitting diodes (micro-LEDs), their excellent brightness, low energy consumption, and ultra-high resolution are significant advantages. However, the large size of traditional inorganic phosphors and the number of side defects have restricted the practical applications of small sized micro-LEDs. Recently, quantum dot (QD) and non-radiative energy transfer (NRET) have been proposed to solve existing problems. QDs possess nanoscale dimensions and high luminous efficiency, and they are suitable for NRET because they are able to nearly contact the micro-LED chip. The NRET between QDs and micro-LED chip further improves the color conversion efficiency (CCE) and effective quantum yield (EQY) of full-color micro-LED devices. In this review, we discuss the NRET mechanism for QD micro-LED devices, and then nano-pillar LED, nano-hole LED, and nano-ring LED are introduced in detail. These structures are beneficial to the NRET between QD and micro-LED, especially nano-ring LED. Finally, the challenges and future envisions have also been described.
quantum dot based micro-LED non-radiative energy transfer atomic layer deposition sidewall defects 
Opto-Electronic Advances
2021, 4(4): 04210022
Author Affiliations
Abstract
1 Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
2 Institute of Photonic System, Taiwan Chiao Tung University, Tainan 71150, China
3 Saphlux Inc., Branford, Connecticut 06405, USA
4 Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
5 Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
6 e-mail: wutingzhu@xmu.edu.cn
7 e-mail: hckuo@faculty.nctu.edu.tw
Red-green-blue (RGB) full-color micro light-emitting diodes (μ-LEDs) fabricated from semipolar (20-21) wafers, with a quantum-dot photoresist color-conversion layer, were demonstrated. The semipolar (20-21) InGaN/GaN μ-LEDs were fabricated on large (4 in.) patterned sapphire substrates by orientation-controlled epitaxy. The semipolar μ-LEDs showed a 3.2 nm peak wavelength shift and a 14.7% efficiency droop under 200 A/cm2 injected current density, indicating significant amelioration of the quantum-confined Stark effect. Because of the semipolar μ-LEDs’ emission-wavelength stability, the RGB pixel showed little color shift with current density and achieved a wide color gamut (114.4% NTSC space and 85.4% Rec. 2020).
Photonics Research
2020, 8(5): 05000630
Author Affiliations
Abstract
1 Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
2 Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China
3 e-mail: wutingzhu@xmu.edu.cn
4 Institute of Photonics System, National Chiao Tung University, Tainan 71150, Taiwan
5 HKUST Fok Ying Tung Research Institute, Nansha District, Guangzhou 511458, China
6 Department of Electrical Engineering and Computer Sciences and TBSI, University of California at Berkeley, Berkeley, California 94720, USA
7 e-mail: hckuo@faculty.nctu.edu.tw
Full-color displays based on micro light-emitting diodes (μLEDs) can be fabricated on monolithic epitaxial wafers. Nanoring (NR) structures were fabricated on a green LED epitaxial wafer; the color of NR-μLEDs was tuned from green to blue through strain relaxation. An Al2O3 layer was deposited on the sidewall of NR-μLEDs, which improved the photoluminescence intensity by 143.7%. Coupling with the exposed multiple quantum wells through nonradiative resonant energy transfer, red quantum dots were printed to NR-μLEDs for a full-color display. To further improve the color purity of the red light, a distributed Bragg reflector is developed to reuse the excitation light.
Photonics Research
2019, 7(4): 04000416

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!